用户工具

站点工具


atk:硅的光学性质

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
atk:硅的光学性质 [2018/03/10 14:21] – [设置计算参数] xie.congweiatk:硅的光学性质 [2019/02/06 10:08] (当前版本) – ↷ 链接因页面移动而自动修正 220.181.108.166
行 6: 行 6:
 ===== 简介 ===== ===== 简介 =====
  
-这篇教程主要讲述:基于密度泛函理论(DFT)以及由Tran和Blaha提出的meta-GGA泛函(TB09),如何使用**ATK**准确计算半导体的电子结构、光学和介电性质。TB09是一种半经验的泛函,利用它可以对非金属的带隙值给出非常好的估计。相比于先进的多体计算方法,TB09泛函通常能够得到相近的结果,但所需时间更短 - 计算速率会快几个数量级,在耗时上基本与LDA方法相当。因此,meta-GGA泛函是一种非常实用的能够有效描述半导体和绝缘体电子结构的方法。+这篇教程主要讲述:基于密度泛函理论(DFT)以及由Tran和Blaha提出的meta-GGA泛函(TB09),如何使用**QuantumATK**准确计算半导体的电子结构、光学和介电性质。TB09是一种半经验的泛函,利用它可以对非金属的带隙值给出非常好的估计。相比于先进的多体计算方法,TB09泛函通常能够得到相近的结果,但所需时间更短 - 计算速率会快几个数量级,在耗时上基本与LDA方法相当。因此,meta-GGA泛函是一种非常实用的能够有效描述半导体和绝缘体电子结构的方法。
  
 需要注意的是,TB09泛函不能用于计算材料的精确能量,只能用于计算材料的电子结构。材料体系的精确能量和几何结构可以基于GGA-PBE泛函得到。 需要注意的是,TB09泛函不能用于计算材料的精确能量,只能用于计算材料的电子结构。材料体系的精确能量和几何结构可以基于GGA-PBE泛函得到。
  
-在这里,我们假定你已经熟悉**VNL**的基本工作流程,如Basic VNL and ATK tutorial所述。+在这里,我们假定你已经熟悉**VNL**的基本工作流程,如[[atk:quantumatk专页#QuantumATK入门]]所述。 
 + 
 +本教程使用硅作为计算实例。与绝大多数半导体类似,GGA和LDA方法均会严重低估Si的带隙(0.5eV到0.6eV)。但是,利用TB09计算得到的带隙值(1.18eV)会与实验值非常接近。此外,利用**QuantumATK**的光学性质计算模块,Si的准确介电常数也可以得到,与实验值仅相差百分之几。 
 + 
 +<WRAP center info 100%> 
 +=== 提示 === 
 +**本教程使用特定版本的QuantumATK创建,因此涉及的截图和脚本参数可能与您实际使用的版本略有区别,请在学习时务必注意。** 
 +</WRAP>
  
-本教程使用硅作为计算实例。与绝大多数半导体类似,GGA和LDA方法均会严重低估Si的带隙(0.5eV到0.6eV)。但是,利用TB09计算得到的带隙值(1.18eV)会与实验值非常接近。此外,利用**ATK**的光学性质计算模块,Si的准确介电常数也可以得到,与实验值仅相差百分之几。 
 ===== 硅的电子结构及光学性质 ===== ===== 硅的电子结构及光学性质 =====
  
行 19: 行 25:
 启动**VNL**,创建新任务并命名,然后打开该任务。通过点击工具栏上的按钮{{:atk:builder.png?25|}}运行Builder。在Builder中,点击Add下拉菜单中的From Database...。在搜索栏中输入"silicon"并从所有匹配项列表中选中硅的标准相 - Silicon (alpha)。在下面的面板中,您将可以看到所选硅结构的晶格参数和对称性等信息。 启动**VNL**,创建新任务并命名,然后打开该任务。通过点击工具栏上的按钮{{:atk:builder.png?25|}}运行Builder。在Builder中,点击Add下拉菜单中的From Database...。在搜索栏中输入"silicon"并从所有匹配项列表中选中硅的标准相 - Silicon (alpha)。在下面的面板中,您将可以看到所选硅结构的晶格参数和对称性等信息。
  
-{{:atk:silicon_database.png?400|}}+{{ :atk:silicon_database.png?400 |}}
  
 双击所选中的硅结构或者点击右下角的{{:atk:plus.png?25|}}图标,将结构加入到Stash中。 双击所选中的硅结构或者点击右下角的{{:atk:plus.png?25|}}图标,将结构加入到Stash中。
行 33: 行 39:
   * 更改输出文件名为''si.nc''   * 更改输出文件名为''si.nc''
  
-{{:atk:si_calculator2.png?400|}}+{{ :atk:si_calculator2.png?400 |}}
  
 下一步是通过双击每一模块更改计算参数: 下一步是通过双击每一模块更改计算参数:
行 66: 行 72:
 选择**DensityOfStates**(gID002),点击插件面板中的**2D plot...**按钮。由态密度图可以确定硅的带隙。 选择**DensityOfStates**(gID002),点击插件面板中的**2D plot...**按钮。由态密度图可以确定硅的带隙。
  
 +{{ :atk:si_dos.png?400 |}}
  
 为了读出带隙,您可以放大态密度图,或者将DOS数据输出为一个文件(或者简单的选择利用**Text Representation...**进行显示而不是**2D Plot...**)。能带的上下边缘分布位于-0.59 eV和0.57 eV处,由此可以得到带隙值为1.16 eV。这个数值和0K下的实验值1.17 eV非常吻合,明显优于LDA方法给出的带隙值0.55 eV。 为了读出带隙,您可以放大态密度图,或者将DOS数据输出为一个文件(或者简单的选择利用**Text Representation...**进行显示而不是**2D Plot...**)。能带的上下边缘分布位于-0.59 eV和0.57 eV处,由此可以得到带隙值为1.16 eV。这个数值和0K下的实验值1.17 eV非常吻合,明显优于LDA方法给出的带隙值0.55 eV。
行 74: 行 80:
 接下来选择**OpticalSpectrum**(gID003),点击插件面板中的**2D plot...**按钮。光谱图如下图所示。 接下来选择**OpticalSpectrum**(gID003),点击插件面板中的**2D plot...**按钮。光谱图如下图所示。
  
 +{{ :atk:si_dielectric_constant.png?400 |}}
  
 通过放大图片(右键单击图片),你可以从图中得到静介电常数$Re[ε(ω=0)]=10.9$,这一数值与实验值11.9基本一致。(用更大的机组描述Si元素,我们可得到12.2左右的数值,但是也请注意我们并没有对//k//点采样进行优化)。 通过放大图片(右键单击图片),你可以从图中得到静介电常数$Re[ε(ω=0)]=10.9$,这一数值与实验值11.9基本一致。(用更大的机组描述Si元素,我们可得到12.2左右的数值,但是也请注意我们并没有对//k//点采样进行优化)。
行 124: 行 130:
 脚本产生的图如下所示。 脚本产生的图如下所示。
  
 +{{ :atk:si_refractive_index.png?400 |}}
  
  
atk/硅的光学性质.1520662914.txt.gz · 最后更改: 2018/03/10 14:21 由 xie.congwei

© 2014-2022 费米科技(京ICP备14023855号