用户工具

站点工具


atk:模拟气相沉积薄膜生长过程

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
atk:模拟气相沉积薄膜生长过程 [2016/09/19 18:13] – [在脚本中实现沉积] nie.hanatk:模拟气相沉积薄膜生长过程 [2018/03/20 22:15] (当前版本) liu.jun
行 8: 行 8:
 在本实例中你将模拟在晶体碳化硅(SiC)基底上生长SiC,与文献[1]中的研究类似。你将使用半经验势,相比从头算方法(譬如DFT方法),它能进行更大系统和更大时间规模的模拟。本例中的模拟主要是物理气相沉积(PVD)方法。当然,如果包含了描述化学反应的合适的力场,或者有充足的计算资源来使用从头算方法,化学气相沉积(CVD)过程原则上也是可以进行模拟的。 在本实例中你将模拟在晶体碳化硅(SiC)基底上生长SiC,与文献[1]中的研究类似。你将使用半经验势,相比从头算方法(譬如DFT方法),它能进行更大系统和更大时间规模的模拟。本例中的模拟主要是物理气相沉积(PVD)方法。当然,如果包含了描述化学反应的合适的力场,或者有充足的计算资源来使用从头算方法,化学气相沉积(CVD)过程原则上也是可以进行模拟的。
  
-对于本实例来说,你需要熟悉在[[atk:分子动力学基础|分子动力学基础]]中描述的分子动力学基本功能。你将学到如何使用Python脚本语言和ATK分子动力学常规中的挂钩功能(hook functionality)来运行高级的模拟。+对于本实例来说,你需要熟悉在[[atk:分子动力学基础|分子动力学基础]]中描述的分子动力学基本功能。你将学到如何使用Python脚本语言和QuantumATK分子动力学常规中的挂钩功能(hook functionality)来运行高级的模拟。
  
 <WRAP center round info 100%> <WRAP center round info 100%>
 **小提示 !** **小提示 !**
-在文献[1]中使用的修正嵌入原子模型(MEAM)目前在VNL-ATK中不可用。你将使用Tersoff势来代替,它并不会产生如参考文献中那样的层状晶体。模拟技术显然独立于势能的选取,因此对各种材料都适用。+在文献[1]中使用的修正嵌入原子模型(MEAM)目前在QuantumATK中不可用。你将使用Tersoff势来代替,它并不会产生如参考文献中那样的层状晶体。模拟技术显然独立于势能的选取,因此对各种材料都适用。
 </WRAP> </WRAP>
  
行 21: 行 21:
 ===== 模拟策略 ===== ===== 模拟策略 =====
  
-运行一个沉积模拟需要一些不同的技术。与通常的平衡态分子动力学模拟最主要的不同是,随着蒸汽原子或分子的引入,整个系统的粒子数随之增加。在VNL-ATK中有两种策略来实现:+运行一个沉积模拟需要一些不同的技术。与通常的平衡态分子动力学模拟最主要的不同是,随着蒸汽原子或分子的引入,整个系统的粒子数随之增加。在QuantumATK中有两种策略来实现:
  
 1.为每个新引进的原子或者分子运行一次新的模拟。通过在已沉积原子/分子上连续添加新的原子/分子可以实现整个沉积的模拟。 1.为每个新引进的原子或者分子运行一次新的模拟。通过在已沉积原子/分子上连续添加新的原子/分子可以实现整个沉积的模拟。
行 27: 行 27:
 2.将所有需要沉积的原子或分子放在模拟晶胞的库(reservoir)中。对于每个新的沉积过程,从库中取出一个原子把它放在基底上方。 2.将所有需要沉积的原子或分子放在模拟晶胞的库(reservoir)中。对于每个新的沉积过程,从库中取出一个原子把它放在基底上方。
  
-第一个方法的好处是只有真正需要的原子才出现在模拟晶胞中,这提高了模拟效率。然而,由于原子数在变化,在VNL-ATK中不可能将整个模拟保存在一个[[http://www.quantumwise.com/documents/manuals/latest/ReferenceManual/index.html/ref.mdtrajectory.html|MD Trajectory]]中用以后续的可视化和分析。所以,本实例选取了第二种方法。当准备模拟时,我们必须注意在库中的原子不会与系统活跃部分有显著的相互作用,尤其是吸附发生的表面。在本实例中,库将会呈现为放在紧挨着基底底部的晶体。+第一个方法的好处是只有真正需要的原子才出现在模拟晶胞中,这提高了模拟效率。然而,由于原子数在变化,在QuantumATK中不可能将整个模拟保存在一个[[http://www.quantumwise.com/documents/manuals/latest/ReferenceManual/index.html/ref.mdtrajectory.html|MD Trajectory]]中用以后续的可视化和分析。所以,本实例选取了第二种方法。当准备模拟时,我们必须注意在库中的原子不会与系统活跃部分有显著的相互作用,尤其是吸附发生的表面。在本实例中,库将会呈现为放在紧挨着基底底部的晶体。
 {{ :atk:reservoir_schematic.png?400 |}} {{ :atk:reservoir_schematic.png?400 |}}
  
atk/模拟气相沉积薄膜生长过程.1474279993.txt.gz · 最后更改: 2016/09/19 18:13 由 nie.han

© 2014-2022 费米科技(京ICP备14023855号