用户工具

站点工具


atk:使用quantumatk进行材料体系动力学计算的实例教程

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
atk:使用quantumatk进行材料体系动力学计算的实例教程 [2022/02/24 15:30] – [聚合物性质] fermiatk:使用quantumatk进行材料体系动力学计算的实例教程 [2022/03/06 19:55] (当前版本) – [导热] fermi
行 14: 行 14:
  
  
-  * [[atk:分子动力学基础|中文(旧)]] +  * [[atk:分子动力学基础|中文教程]] 
-  * [[https://docs.quantumatk.com/tutorials/md_basics/md_basics.html|英文]]+  * [[https://docs.quantumatk.com/tutorials/md_basics/md_basics.html|英文教程]]
  
 ---- ----
行 31: 行 31:
 教程链接: 教程链接:
  
-  * [[https://docs.quantumatk.com/tutorials/amorphous_structures/amorphous_structures.html|生成非晶态结构]](英文)+  * [[https://docs.quantumatk.com/tutorials/amorphous_structures/amorphous_structures.html|生成非晶态结构]](英文教程
  
  
行 79: 行 79:
  
 === 石墨烯片上离子轰击的模拟 === === 石墨烯片上离子轰击的模拟 ===
-{{ :atk:atk-bombardment_movie.gif?400|}}+{{ :atk:atk-bombardment_movie.gif?200|}}
 石墨烯片的性能可以通过故意在材料中引入缺陷来调节。用高能离子轰击石墨烯片是一种有希望以可控方式获得缺陷的方法。分子动力学模拟可用于阐明此类过程中涉及的机制,并提高我们对外部参数(如入射离子的动能)如何影响缺陷形成的理解。在本教程中,您将模拟石墨烯的离子轰击: 石墨烯片的性能可以通过故意在材料中引入缺陷来调节。用高能离子轰击石墨烯片是一种有希望以可控方式获得缺陷的方法。分子动力学模拟可用于阐明此类过程中涉及的机制,并提高我们对外部参数(如入射离子的动能)如何影响缺陷形成的理解。在本教程中,您将模拟石墨烯的离子轰击:
   * 学习使用 QuantumATK 设置计算所需的基本步骤;   * 学习使用 QuantumATK 设置计算所需的基本步骤;
行 126: 行 126:
  
 === 界面热导 === === 界面热导 ===
 +{{ :atk:qatk-heatflow_gb_schematic.png?400|}}
 +现代电子设备的不断缩小意味着纳米设备的复杂性日益增加。当器件由多种材料构成时,导热系数很难预测。更常见的情况是,设备工程师希望通过在不同材料之间构建界面来最大化或最小化热导率。
 +
 +在本教程中,您将学习如何使用具有经典势的分子动力学来模拟通过界面的热流,并计算界面热阻。
  
   * [[https://docs.quantumatk.com/tutorials/interfacial_thermal_conductance/interfacial_thermal_conductance.html|界面热导]](英文)   * [[https://docs.quantumatk.com/tutorials/interfacial_thermal_conductance/interfacial_thermal_conductance.html|界面热导]](英文)
行 154: 行 158:
  
 === 液体的粘度 === === 液体的粘度 ===
-{{ :atk:methanol_results-20190929.png?400|}}+{{ :atk:methanol_results-20190929.png?300|}}
 在本教程中,您将以液态甲醇为例学习如何采用分子动力学(MD)模拟计算不同液体的粘度。理解粘度对许多工业化学过程的设计至关重要,因为粘度描述了液体的流动。本教程演示了您将如何利用 QuantumATK 工具模拟简单液体的粘性。该方法也可以应用于许多更为复杂和混合的液体。 在本教程中,您将以液态甲醇为例学习如何采用分子动力学(MD)模拟计算不同液体的粘度。理解粘度对许多工业化学过程的设计至关重要,因为粘度描述了液体的流动。本教程演示了您将如何利用 QuantumATK 工具模拟简单液体的粘性。该方法也可以应用于许多更为复杂和混合的液体。
  
行 163: 行 167:
   * [[https://docs.quantumatk.com/tutorials/viscosity_methanol/viscosity_methanol.html|英文教程]]   * [[https://docs.quantumatk.com/tutorials/viscosity_methanol/viscosity_methanol.html|英文教程]]
  
- 
-===== 电池材料 ===== 
- 
-  * [[Li-S电池的开路电压:ReaxFF方法分子动力学]] 
-  * ([[https://docs.quantumatk.com/tutorials/ocv_lis_battery/ocv_lis_battery.html|英文教程]]) 
- 
- 
-===== 聚合物性质 ===== 
- 
-=== 建立环氧热固性材料的模型 === 
-{{ :atk:atk-epoxy-crosslink-movie_tool.png?400|}} 
-在本教程中,您将学习如何使用环氧胺系统的示例,通过交联不同的分子来构建热固性材料的模型。然后,您将学习如何分析交联反应,以估计材料的凝胶点。了解不同热固性材料的结构和性能对于为广泛的应用选择正确的材料至关重要。它还可以帮助设计具有某些所需特性的新材料。本教程演示如何使用QuantumATK工具模拟不同分子之间的交联反应。这种方法可以应用于广泛的材料和化学反应。 
- 
-教程链接: 
-  * [[https://docs.quantumatk.com/tutorials/crosslink_builder/crosslink_builder.html|建立环氧热固性材料的模型]](英文) 
- 
----- 
- 
-=== 聚合物材料的热-力学性能分析 ===  
-{{ :atk:atk-mechanical-tg_plot.png?400|}} 
-在本教程中,您将学习如何估计聚合物系统的热机械性能,尤其是玻璃化转变温度、杨氏模量和泊松比。这些特性在许多应用中都是关键的性能参数。例如,它们可以确定给定材料的工作温度或最大负载。由于这些性质是由聚合物系统的原子结构决定的,因此可以通过分子模拟来估计。 
- 
-作为示例,使用的材料为环氧胺热固性材料,由双酚F二缩水甘油醚(EPON-862)和二乙烯基乙二胺(DETDA)组成。构建环氧热固性材料模型的教程演示了构建该材料模型所需的步骤。本教程继续该教程,演示如何模拟模型的属性。这里概述的程序非常通用,可以应用于不同类型的聚合物和非聚合物材料。最值得注意的是,相同的模拟程序可用于线性热塑性聚合物的模型,例如使用聚合物生成器工具构建的聚(甲基丙烯酸甲酯)和聚氯乙烯。这些方法不需要交联聚合物体系就能获得良好的结果。 
- 
-教程链接: 
-  * [[https://docs.quantumatk.com/tutorials/crosslink_analysis/crosslink_analysis.html|聚合物材料的热-力学性能分析]](英文) 
  
  
atk/使用quantumatk进行材料体系动力学计算的实例教程.1645687830.txt.gz · 最后更改: 2022/02/24 15:30 由 fermi

© 2014-2022 费米科技(京ICP备14023855号