用户工具

站点工具


adf:batteryrelated

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
adf:batteryrelated [2020/08/01 11:40] – [2020] liu.junadf:batteryrelated [2024/04/13 22:47] (当前版本) – [精选] liu.jun
行 1: 行 1:
 +
 +[[adf:publishedpapers|上级目录]]
 ====== 电池/能源/光伏[目录]====== ====== 电池/能源/光伏[目录]======
-=====2020=====+=====精选===== 
 +  - Fe和Mn催化六方氮化硼储氢应用的计算研究, International Journal of Hydrogen Energy, Volume 65, 2 May 2024, Pages 727-739, DOI: [[https://www.sciencedirect.com/science/article/abs/pii/S0360319924011911|10.1016/j.ijhydene.2024.03.335]] 
 +  - 二维富碳碳化钛(TiC3)作为钾离子电池大容量阳极, Appl. Surf. Sci., 2024, Volume 659, 30 June 2024, 159879, DOI: [[https://www.sciencedirect.com/science/article/abs/pii/S0169433224005920|10.1016/j.apsusc.2024.159879]] 
 +  - 【国内课题组】从被衬底或孤立的金属原子、团簇模型理解氢经济, Fundamental Research, 2023, DOI: [[https://www.sciencedirect.com/science/article/pii/S2667325823003163|10.1016/j.fmre.2023.10.011]] 
 +  - 【国内课题组】柔性准固态水性锌离子电池:设计原理、功能化策略和应用, Advanced Energy Materials 2023, [[https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202300250|DOI: 10.1002/aenm.202300250]] 
 +  - 钠离子电池羧酸盐阳极材料性能的空间效应, Small, 2023, DOI: [[https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202308113|10.1002/smll.202308113]] 
 +  - 全溶液处理半透明有机太阳能电池PEDOT顶部电极的原位掺杂, ACS Appl. Mater. Interfaces 2023, DOI: [[https://pubs.acs.org/doi/abs/10.1021/acsami.3c09984|10.1021/acsami.3c09984]] 
 +  - 书籍:[[https://research.vu.nl/ws/portalfiles/portal/172744638/J++Beli%C4%87+-+thesis.pdf|《Computational optimization of dyes for dye-sensitized solar cells》]] 
 +  - [[https://pubs.acs.org/doi/full/10.1021/acsaem.2c02431|用从头分子动力学研究太阳能电池中过渡金属氧化还原介体敏化有机染料的显式再生机制和动态再生速率(ACS Appl. Energy Mater. 2022)]] 
 +  - [[https://pubs.acs.org/doi/abs/10.1021/jacs.1c10947|Conformational Gap Control in CsTaS3(J. Am. Chem. Soc. 2022)]] 
 +  - [[https://www.fermitech.com.cn/ams/ams_application/adfhighlight-202104|水系氧化还原液流电池的新型有机电解质分子设计(Science 2021)]] 
 +  - [[https://www.fermitech.com.cn/ams/ams_application/reaxffhighlight202103|水钠锰矿电容机理的实验与模拟研究(Nat. Mater. 2021)]] 
 +  - [[https://pubs.acs.org/doi/abs/10.1021/jacs.1c00211|非富勒烯受体π-延伸和四氟化策略的系统结合将聚合物太阳能电池的效率提高到16%以上(JACS 2021)]] 
 +  - [[adf:adfhighlight2021005]] 
 +  - [[https://pubs.acs.org/doi/abs/10.1021/acsaem.1c01113|Enhancement of Near-Infrared Singlet–Triplet Absorption of Ru(II) Sensitizers for Improving Conversion Efficiency of Solar Cells(ACS Appl. Energy Mater. 2021)]] 
 +  - [[https://www.nature.com/articles/s41560-020-0624-7#MOESM1|光致变色染料敏化太阳能电池(Nat. Energy 2020)]] 
 +  - [[http://www.fermitech.com.cn/adf/adf_application/highlight-084|光学透明n型材料-氟化锗纳米笼及其内嵌金属富勒烯衍生物(JACS, 2019)]] 
 +  - [[http://www.fermitech.com.cn/adf/adf_application/highlight-072|仿生高容量吩嗪基阳极的水系有机氧化还原液流电池(Nature Energy, 2018)]] 
 +  - [[http://www.fermitech.com.cn/adf/adf_application/highlight-077|金属卤化物钙钛矿的镜像成键现象(JACS,2018)]] 
 +  - B.M. Savoie et al., Unequal Partnership: Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in Generating Free Charge, J. Am. Chem. Soc. 138, 2876-2884 (2014) 
 +  - S.-H. Choi et al., Amorphous Zinc Stannate (Zn2SnO4) Nanofibers Networks as Photoelectrodes for Organic Dye-Sensitized Solar Cells, Adv. Funct. Mater. 1-10 (2013) 
 +====2024==== 
 +  - B4C3作为锂离子电池电位电极材料的应用前景, Materials Science in Semiconductor Processing, Volume 176, 15 June 2024, 108320, DOI: [[https://www.sciencedirect.com/science/article/abs/pii/S1369800124002166|10.1016/j.mssp.2024.108320]] 
 +  - 硒化镉团簇的吸附:一种利用扶手椅石墨烯纳米带增强太阳能转换的新方法,AIP Advances, 2024, 14, 035020, DOI: [[https://pubs.aip.org/aip/adv/article/14/3/035020/3270818|10.1063/5.0187458]] 
 +  - 三硒亚砜基有机分子作为新一代太阳能电池供体和空穴传输材料, Journal of Physics and Chemistry of Solids, 2024, 111961, DOI: [[https://www.sciencedirect.com/science/article/abs/pii/S0022369724000969|10.1016/j.jpcs.2024.111961]] 
 +  - Al2CO双层阳极材料在镁离子电池中的电位解析及对锂离子电池的不适用性, Journal of Alloys and Compounds, 2024, Volume 981, 25 April 2024, 173697, DOI: [[https://www.sciencedirect.com/science/article/abs/pii/S0925838824002834|10.1016/j.jallcom.2024.173697]] 
 +  - 增强具有辅助配体的三吡啶基Ru/Os配合物的近红外吸收以激活染料敏化太阳能电池中的自旋禁止跃迁:TDDFT研究, J. Phys. Chem. A, 2024, DOI: [[https://pubs.acs.org/doi/full/10.1021/acs.jpca.3c07554|10.1021/acs.jpca.3c07554]] 
 +  - 锂在双层TiC3中吸附和嵌入的计算, Electrochimica Acta, 2024, DOI: [[https://www.sciencedirect.com/science/article/abs/pii/S0013468624000070|10.1016/j.electacta.2024.143763]] 
 +=====2023===== 
 +  - 【中南大学肖劲-仲奇凡教授课题组】[[https://mp.weixin.qq.com/s/df7GchOCPdT_kVCdgKBNZw|锂离子电池用导电炭黑微观结构建模及基于ReaxFF与DFT的电化学反应机理研究]], Energy&Fuels, 2023 
 +  - 用于染料敏化太阳能电池的新型苯并咪唑基钌(II)染料的合成及其光谱和理论评价, Journal of Molecular Structure, 2023, DOI: [[https://www.sciencedirect.com/science/article/abs/pii/S0022286023009560|10.1016/j.molstruc.2023.135860]] 
 +  - Polyoxometalate–Polymer Hybrid Artificial Layers for Ultrastable and Reversible Zn Metal Anodes, Chemical Engineering Journal, 2023, 143644 
 +  - 镁修饰锑烯储氢材料的DFT展望, Materials Science in Semiconductor Processing, 2023,Volume 161, July 2023, 107471, DOI:[[https://www.sciencedirect.com/science/article/abs/pii/S1369800123001646|10.1016/j.mssp.2023.107471]]
  
-  * [[https://pubs.rsc.org/en/content/articlehtml/2020/nj/d0nj02748k|5-氨基颉草酸取代甲基铵离子对三卤化铅钙钛矿太阳电池的影响:实验和理论相结合的研究(New Journal of Chemistry 2020)]] + 
-  [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c03966|用斯塔克位移监测乙腈基硅光电极的局部电场(J. Phys. Chem. C 2020)]] +=====2022===== 
-  [[https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c01890|γ-丁内酯溶剂化PbI2的结构和光学性质:卤化铅钙钛矿前驱体溶液化学研究进展(J. Phys. Chem. Lett. 2020)]] +  - [[https://www.sciencedirect.com/science/article/pii/S0264127522011492|γ-石墨烯:一种很有前途的有机光伏电子受体(Materials & Design)]] 
-  * [[https://www.nature.com/articles/s41560-020-0624-7#MOESM1|光致变色染料敏化太阳能电池(Nat. Energy 2020)]] +  - [[https://link.springer.com/article/10.1007/s11664-022-10127-6|氮和硼掺杂的多环芳烃作为钙钛矿太阳能电池的空穴传输材料(Journal of Electronic Materials 2022)]] 
-  * [[adf:bandhighlight202003|钠离子电池碳化硅阳极的DFT研究(New J. Chem. 2020)]] +  - [[https://iopscience.iop.org/article/10.1149/1945-7111/aca362/meta|锂离子电池石墨负极eReaxFF力场的开发与应用(Journal of The Electrochemical Society 2022)]] 
-  [[https://pubs.rsc.org/en/content/articlelanding/2020/nj/d0nj01311k/#!divAbstract|First principles study of SiC as the anode in sodium ion batteries(New Journal of Chemistry 2020)]] +  - [[https://www.fermitech.com.cn/ams/ams_application/adfhighlight202209|Super-B 作为 碱金属(Li、Na 和 K)离子电池阳极的计算研究(Journal of The Electrochemical Society 2022)]] 
-  [[https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26253|Time‐dependent density functional theory investigations on structural modification in carbazole‐based organic photosensitizers to improve electron injection in dye‐sensitized solar cell(INT J QUANTUM CHEM, 2020)]] +  - [[https://www.fermitech.com.cn/ams/ams_application/adfhighlight202208/|卤代羧酸盐作为稳定和可持续钠离子电池的有机阳极(ACS Appl. Mater. & Interfaces 2022)]] 
-  [[https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c00456|Bis-Cyclometalated Iridium Complexes Containing 4,4′-Bis(phosphonomethyl)-2,2′-bipyridine Ligands: Photophysics, Electrochemistry, and High-Voltage Dye-Sensitized Solar Cells(Inorg. Chem. 2020)]] +  - [[https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.202200440|A Novel and Highly Efficient Indolyl-based Electrolyte for Mg-batteries(Energy Technology 2022)]] 
-  [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b10535|溶剂和添加剂还原分解形成锂离子电池固态电解质界面(J. Phys. Chem. C 2020)]] +  - [[https://www.fermitech.com.cn/ams/ams_application/adfhighlight202204|染料敏化太阳能电池的BCL方法:基础与应用(Appl. Sci. 2022)]] 
-  [[https://pubs.rsc.org/en/content/articlehtml/2020/cp/c9cp06626h|A DFT study on borophene/boron nitride interface for application as an electrode(Phys. Chem. Chem. Phys., 2020)]]+  - [[https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26895|层状碳化硅作为锂离子电池负极的第一性原理研究(International Journal of Quantum Chemistry 2022)]] 
 +  - [[https://pubs.acs.org/doi/full/10.1021/acssuschemeng.1c08101|染料敏化太阳能电池中碘离子再生染料机理和速率的从头算分子动力学研究(ACS Sustainable Chem. Eng. 2022)]] 
 +  - [[https://www.journal.csj.jp/doi/abs/10.1246/bcsj.20210423|采用单重态-三重态跃迁的高效宽带太阳能转换(Bulletin of the Chemical Society of Japan 2022)]] 
 +  - [[https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26876|极性溶剂对有机染料结构、电子和光学性质的影响(INT J QUANTUM CHEM 2022)]] 
 +  - [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c08426|离子配位对铝硫电池阴极反应机理的影响(J. Phys. Chem. C 2022)]] 
 +=====2021===== 
 +  - [[https://www.fermitech.com.cn/ams/ams_application/adfhighlight202113|卤化物钙钛矿溶液的理论理解(ACS Appl. Energy Mater. 2021; J. Phys. Chem. B 2020; J. Phys. Chem. Lett. 2020; ACS Appl. Energy Mater. 2019)]] 
 +  - [[https://pubs.rsc.org/en/content/articlepdf/2021/cp/d1cp04218a|染料敏化光电化学电池中染料氧化还原电位的自动评估(Phys. Chem. Chem. Phys., 2021)]] 
 +  - [[https://www.fermitech.com.cn/uncategorized/dftbhighlight202101|卤化物钙钛矿:高效准确的DFTB模拟( J. Chem. Inf. Model 2021)]] 
 +  - [[https://pubs.rsc.org/en/content/articlelanding/2021/nj/d1nj04261k/unauth|层状碳化硅:一种新型锂离子电池负极材料(New Journal of Chemistry 2021)]] 
 +  - [[https://pubs.rsc.org/en/content/articlepdf/2021/cp/d1cp02412d|用从头算分子动力学研究染料敏化太阳能电池中不同染料的光诱导界面电荷转移动力学(Phys. Chem. Chem. Phys. 2021)]] 
 +  - [[https://www.fermitech.com.cn/ams/ams_application/reaxffhighlight202104|使用ReaxFF研究卤化物钙钛矿的不稳定性(J. Phys. Chem. Lett. 2021)]] 
 +  - [[https://avs.scitation.org/doi/full/10.1116/6.0001136|工程化多层MgO/Ag/MgO光电阴极中观察到的非理想行为的探索(Journal of Vacuum Science & Technology A 2021)]] 
 +  - [[https://www.sciencedirect.com/science/article/abs/pii/S036031992102125X|超临界水中苯并噻吩气化制氢过程中硫迁移的分子动力学研究(International Journal of Hydrogen Energy 2021)]] 
 +  - [[https://www.sciencedirect.com/science/article/abs/pii/S0013468621009312|具有优异循环性能的锂离子电池负极:双层β-铋(Electrochimica Acta 2021)]] 
 +  - [[https://www.sciencedirect.com/science/article/abs/pii/S0921510721000210|A DFT study of bismuthene as anode material for alkali-metal (Li/Na/K)-ion batteries(Materials Science and Engineering: B 2021)]] 
 +  - [[https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26596|A first‐principles study on improvement of photoinjection in organic dyes(International Journal of Quantum Chemistry,2021)]] 
 +=====2020===== 
 +  - [[adf:dftbhighlight2020|全溶剂化染料敏化光阳极中光诱导电子注入DFTB-MD研究(J. Phys. Chem. C 2020)]] 
 +  - [[https://pubs.rsc.org/en/content/articlelanding/2020/cy/d0cy01600d/unauth#!divAbstract|双金属非晶态MOF衍生的电催化剂和光电催化剂(Catalysis Science & Technology 2020)]] 
 +  - [[https://www.sciencedirect.com/science/article/abs/pii/S0143720820314790|C60和C70类似物的环间苯表面对聚合物改进的作用:富勒烯太阳能DFT计算的单元格(Dyes and Pigments 2020)]] 
 +  - [[https://pubs.rsc.org/en/content/articlehtml/2020/nj/d0nj02748k|5-氨基颉草酸取代甲基铵离子对三卤化铅钙钛矿太阳电池的影响:实验和理论相结合的研究(New Journal of Chemistry 2020)]] 
 +  [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c03966|用斯塔克位移监测乙腈基硅光电极的局部电场(J. Phys. Chem. C 2020)]] 
 +  [[https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c01890|γ-丁内酯溶剂化PbI2的结构和光学性质:卤化铅钙钛矿前驱体溶液化学研究进展(J. Phys. Chem. Lett. 2020)]] 
 +  - [[adf:bandhighlight202003|钠离子电池碳化硅阳极的DFT研究(New J. Chem. 2020)]] 
 +  [[https://pubs.rsc.org/en/content/articlelanding/2020/nj/d0nj01311k/#!divAbstract|First principles study of SiC as the anode in sodium ion batteries(New Journal of Chemistry 2020)]] 
 +  [[https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26253|Time‐dependent density functional theory investigations on structural modification in carbazole‐based organic photosensitizers to improve electron injection in dye‐sensitized solar cell(INT J QUANTUM CHEM, 2020)]] 
 +  [[https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c00456|Bis-Cyclometalated Iridium Complexes Containing 4,4′-Bis(phosphonomethyl)-2,2′-bipyridine Ligands: Photophysics, Electrochemistry, and High-Voltage Dye-Sensitized Solar Cells(Inorg. Chem. 2020)]] 
 +  [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b10535|溶剂和添加剂还原分解形成锂离子电池固态电解质界面(J. Phys. Chem. C 2020)]] 
 +  [[https://pubs.rsc.org/en/content/articlehtml/2020/cp/c9cp06626h|A DFT study on borophene/boron nitride interface for application as an electrode(Phys. Chem. Chem. Phys., 2020)]]
 =====2019===== =====2019=====
  
-  [[https://dialnet.unirioja.es/servlet/dctes?codigo=255901|Large scale modelling of photo-excitation processes in materials with application in organic photovoltaics (2019)]] +  [[https://dialnet.unirioja.es/servlet/dctes?codigo=255901|Large scale modelling of photo-excitation processes in materials with application in organic photovoltaics (2019)]] 
-  [[https://pubs.acs.org/doi/abs/10.1021/acs.orglett.9b04314|Quinoidal Oligothiophenes Having Full Benzene Annelation: Synthesis, Properties, Structures, and Acceptor Application in Organic Photovoltaics(Organic Letters, 2019)]] +  [[https://pubs.acs.org/doi/abs/10.1021/acs.orglett.9b04314|Quinoidal Oligothiophenes Having Full Benzene Annelation: Synthesis, Properties, Structures, and Acceptor Application in Organic Photovoltaics(Organic Letters, 2019)]] 
-  [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201903|工业聚合物制备锂离子电池新型电极材料的理论筛选(Ionics, 2019)]] +  [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201903|工业聚合物制备锂离子电池新型电极材料的理论筛选(Ionics, 2019)]] 
-  [[https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj00457b/unauth#!divAbstract|Synthesis, Characterization and Computational Study of Ilmenite-Structured Ni3Mn3Ti6O18 Thin Film Photoanode for Solar Water Splitting (New Journal of Chemistry, 2019)]] +  [[https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj00457b/unauth#!divAbstract|Synthesis, Characterization and Computational Study of Ilmenite-Structured Ni3Mn3Ti6O18 Thin Film Photoanode for Solar Water Splitting (New Journal of Chemistry, 2019)]] 
-  [[https://www.sciencedirect.com/science/article/pii/S0039602819301396|First principles study of transition metals doped SiC for application as counter electrode in DSSC (Surface Science, 2019)]] +  [[https://www.sciencedirect.com/science/article/pii/S0039602819301396|First principles study of transition metals doped SiC for application as counter electrode in DSSC (Surface Science, 2019)]] 
-  [[https://pubs.acs.org/doi/10.1021/acs.jpca.8b12292|Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer: Fullerene Based Bulk Heterojunction Solar Cells (J. Phys. Chem. A, 2019, 123,6,1233)]] +  [[https://pubs.acs.org/doi/10.1021/acs.jpca.8b12292|Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer: Fullerene Based Bulk Heterojunction Solar Cells (J. Phys. Chem. A, 2019, 123,6,1233)]] 
-  * [[http://www.fermitech.com.cn/adf/adf_application/highlight-084|光学透明n型材料-氟化锗纳米笼及其内嵌金属富勒烯衍生物(JACS, 2019)]] +  - [[https://pubs.rsc.org/en/content/articlehtml/2018/cp/c8cp06693k|Exploring the electrochemical properties of hole transporting materials from first-principles: an efficient strategy to improve the performance of perovskite solar cells (Physical Chemistry Chemical Physics, 2019)]] 
-  * [[https://pubs.rsc.org/en/content/articlehtml/2018/cp/c8cp06693k|Exploring the electrochemical properties of hole transporting materials from first-principles: an efficient strategy to improve the performance of perovskite solar cells (Physical Chemistry Chemical Physics, 2019)]] +  [[https://www.sciencedirect.com/science/article/pii/S014372081831444X|Optical and electronic properties of benzopyrylium derivatives. Theoretical-experimental synergy towards novel DSSCs devices (Dyes and Pigments, 2019)]]
-  [[https://www.sciencedirect.com/science/article/pii/S014372081831444X|Optical and electronic properties of benzopyrylium derivatives. Theoretical-experimental synergy towards novel DSSCs devices (Dyes and Pigments, 2019)]]+
 =====2018===== =====2018=====
-  * [[http://www.fermitech.com.cn/adf/adf_application/highlight-077|金属卤化物钙钛矿的镜像成键现象(JACS,2018)]] +  - [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b04386|On the Monolayer Crystal Structure of the Organic Semiconductor 7-Decyl-2-Phenyl[1]benzothieno[3,2-b][1]benzothiophene(J. Phys. Chem. C, 2018)]] 
-  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b04386|On the Monolayer Crystal Structure of the Organic Semiconductor 7-Decyl-2-Phenyl[1]benzothieno[3,2-b][1]benzothiophene(J. Phys. Chem. C, 2018)]] +
-  * [[http://www.fermitech.com.cn/adf/adf_application/highlight-072|仿生高容量吩嗪基阳极的水系有机氧化还原液流电池(Nature Energy, 2018)]]+
 =====更早===== =====更早=====
-  [[http://www.fermitech.com.cn/adf/adf_application/highlight-068|色散力强烈影响有机光伏材料的光致电荷分离( J.Phys. Chem. C,2017)]] +  [[http://www.fermitech.com.cn/adf/adf_application/highlight-068|色散力强烈影响有机光伏材料的光致电荷分离( J.Phys. Chem. C,2017)]] 
-  [[http://link.springer.com/article/10.1007/s00214-016-1940-7|The role of the oxide shell on the stability and energy storage properties of MWCNT@TiO2 nanohybrid materials used in Li-ion batteries (Theor Chem Acc, 2016)]] +  [[http://link.springer.com/article/10.1007/s00214-016-1940-7|The role of the oxide shell on the stability and energy storage properties of MWCNT@TiO2 nanohybrid materials used in Li-ion batteries (Theor Chem Acc, 2016)]] 
-  [[http://www.fermitech.com.cn/adf/highlight-022|ReaxFF+TDDFT研究TiO2表面染料分子的结构特征、聚集特征、光学与动力学性 (J. Phys. Chem. C, 2016)]] +  [[http://www.fermitech.com.cn/adf/highlight-022|ReaxFF+TDDFT研究TiO2表面染料分子的结构特征、聚集特征、光学与动力学性 (J. Phys. Chem. C, 2016)]] 
-  M. Barrera et al., On the performance of ruthenium dyes in dye sensitized solar cells: a free cluster approach based on theoretical indexes, J. Molecular Model. 22:118 (2016) +  M. Barrera et al., On the performance of ruthenium dyes in dye sensitized solar cells: a free cluster approach based on theoretical indexes, J. Molecular Model. 22:118 (2016) 
-  [[http://www.fermitech.com.cn/adf-highlight-007|ReaxFF分子动力学模拟锂硫电池中的粒子扩散 (Phys. Chem. Chem. Phys., 2015)]] +  [[http://www.fermitech.com.cn/adf-highlight-007|ReaxFF分子动力学模拟锂硫电池中的粒子扩散 (Phys. Chem. Chem. Phys., 2015)]] 
-  U. Mehmood et al., Theoretical study of benzene/thiophene based photosensitizers for dye sensitized solar cells (DSSCs), Dyes and Pigments 118, 152 (2015) +  U. Mehmood et al., Theoretical study of benzene/thiophene based photosensitizers for dye sensitized solar cells (DSSCs), Dyes and Pigments 118, 152 (2015) 
-  [[http://www.fermitech.com.cn/adf/highlight-019|染料敏化太阳能电池中钌染料的效率 (J Mol. Model, 2014)]] +  [[http://www.fermitech.com.cn/adf/highlight-019|染料敏化太阳能电池中钌染料的效率 (J Mol. Model, 2014)]] 
-  A. Solovyeva, M. Pavanello, and J. Neugebauer, Describing long-range charge-separation processes with   subsystem density-functional theory J. Chem. Phys., 140, 164103 (2014). See also Highlight. +  A. Solovyeva, M. Pavanello, and J. Neugebauer, Describing long-range charge-separation processes with   subsystem density-functional theory J. Chem. Phys., 140, 164103 (2014). See also Highlight. 
-  E. Ronca, F. de Angelis, and S. Fantacci, TDDFT Modeling of Spin-Orbit Coupling in Ru and Os Solar Cell Sensitizers, J. Phys. Chem. C 118, 17067-17078 (2014). +  E. Ronca, F. de Angelis, and S. Fantacci, TDDFT Modeling of Spin-Orbit Coupling in Ru and Os Solar Cell Sensitizers, J. Phys. Chem. C118, 17067-17078 (2014). 
-  S. Fantacci, E. Ronca, and F. de Angelis, Impact of Spin-Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells, J. Phys. Chem. Lett. 5, 375-380 (2014) +  S. Fantacci, E. Ronca, and F. de Angelis, Impact of Spin-Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells, J. Phys. Chem. Lett. 5, 375-380 (2014) 
-  D. Jolly et al., A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability, Scientific Reports4, 4033 (2014) +  D. Jolly et al., A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability, Scientific Reports, 4, 4033 (2014) 
-  * B.M. Savoie et al., Unequal Partnership: Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in Generating Free Charge J. Am. Chem. Soc. 138, 2876-2884 (2014) +  - N. Renaud, P. A. Sherratt, M. A. Ratner, Mapping the Relation between Stacking Geometries and Singlet Fission Yield in a Class of Organic Crystals J. Phys. Chem. Lett. 4, 1065-1069 (2013) 
-  * N. Renaud, P. A. Sherratt, M. A. Ratner, Mapping the Relation between Stacking Geometries and Singlet Fission Yield in a Class of Organic Crystals J. Phys. Chem. Lett. 4, 1065-1069 (2013) +  - J. Wang et al., Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC) Dyes and Pigments 99, 440-446 (2013) 
-  * S.-H. Choi et al., Amorphous Zinc Stannate (Zn2SnO4) Nanofibers Networks as Photoelectrodes for Organic Dye-Sensitized Solar Cells Adv. Funct. Mater. 1-10 (2013) +  X. Zarate et al., Theoretical Study of Sensitizer Candidates for Dye-Sensitized Solar Cells: Peripheral Substituted Dizinc Pyrazinoporphyrazine-Phthalocyanine Complexes J. Phys. Chem. A 117, 430-438 (2013). 
-  * J. Wang et al., Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC) Dyes and Pigments 99, 440-446 (2013) +  C. König and J. Neugebauer, Exciton Coupling Mechanisms Analyzed with Subsystem TDDFT: Direct vs. Pseudo Exchange Effects, J. Phys. Chem. B 117, 3480 (2013). 
-  X. Zarate et al., Theoretical Study of Sensitizer Candidates for Dye-Sensitized Solar Cells: Peripheral Substituted Dizinc Pyrazinoporphyrazine-Phthalocyanine Complexes J. Phys. Chem. A 117, 430-438 (2013). +  C. König et al., Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm-Dancoff approximation, J. Chem. Phys.138, 034104 (2013). 
-  C. König and J. Neugebauer, Exciton Coupling Mechanisms Analyzed with Subsystem TDDFT: Direct vs. Pseudo Exchange Effects, J. Phys. Chem. B 117, 3480 (2013). +  P. S. Johnson et al., Electronic structure of Fe- vs. Ru-based dye molecules, J. Chem. Phys. 138, 044709 (2013) 
-  C. König et al., Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm-Dancoff approximation, J. Chem. Phys.138, 034104 (2013). +  [[http://www.fermitech.com.cn/adf/highlight-034|相对论效应提高电池电压 (PRL,2011)]]
-  P. S. Johnson et al., Electronic structure of Fe- vs. Ru-based dye molecules, J. Chem. Phys. 138, 044709 (2013) +
-  [[http://www.fermitech.com.cn/adf/highlight-034|相对论效应提高电池电压 (PRL,2011)]]+
adf/batteryrelated.1596253219.txt.gz · 最后更改: 2020/08/01 11:40 由 liu.jun

© 2014-2022 费米科技(京ICP备14023855号