离子导体相对于电子导体在固体氧化物燃料电池阴极中渗透的优势

Posted · Add Comment

概述 固体氧化物燃料电池(SOFC)是一种极具吸引力的电化学装置,可以直接有效地利用燃料的化学能发电。SOFC 在相对高温(600–1000 ℃)下工作,可实现较高的燃料灵活性,并通过热电联产系统中的废热回收提高效率。为充分发挥潜力,SOFC 需要进一步改进,在经济上与传统能源转换技术竞争,包括提高其耐用性和可靠性。 渗透是在预制电极骨架内生成具有特定性质(如特定电导率或电催化作用)纳米级固体的过程。渗透改变了电极的局部形态,对电化学反应位点的数量和/或质量和电荷传输具有积极的影响。在实验上,很难直接确定局部电化学如何受到影响和在相关长度尺度(几十微米量级)上以适当的分辨率(纳米量级)量化电化学活性位点的 3D 分布。 为了解纳米级渗透如何影响性能,需要能够模拟许多相对较大体积 3D 微观结构的计算工具。本项目通过研发的高通量开源仿真代码 ERMINE 对 55 种不同的阴极微观结构进行有限元模拟,探索 SOFC 中离子导体和电子导体作为渗透物的差异。 图1:从分割图像数据到模拟的计算工作流程 亮点 对渗透 SOFC 阴极进行电化学 HPC 模拟。 离子导体的渗透比电子导体更能提升性能。 离子导体将在 TPB 处产生的电流重新分布到整个电极上。 再分布降低了 TPB 处的局部欧姆过电势,增加了局部活性。 原始微观结构更能显著影响整体性能。 图像处理 采用商业阴极结构的图像数据进行 3D 重建,原始数据尺寸为 126 × 73 × 12.5 μm3,体素为 55 × 55 × 50 nm3,基于灰度值将其分割为氧化钇稳定的氧化锆(YSZ)、镧锶锰氧化物(LSM)和孔隙。从完整模型中随机提取五个尺寸为 10 × 10 × 7 μm3 的较小微观结构子体积,记为 BB_i (i = 1-5)。为更精准地分割出三相界面(TPB),通过重采样调整分辨率,将原有的 1 个体素由 8 个相同的更小体素组成。 对五个微观结构进行人为地渗透,随机选择与 LSM 和 YSZ 表面接触的一定比例孔隙种子。将渗透相(LSM […]

锰掺杂卤化铅钙钛矿:能量转移机制还是电荷转移机制?(ACS Energy Lett. 2021)

Posted · Add Comment

Mn掺杂的铅卤化铅钙钛矿的掺杂发光寿命长,主体激子量子产率高。沙特阿拉伯国王大学Edoardo Mosconi课题组与意大利技术研究院Filippo De Angelis课题组等,通过对APbX3钙钛矿(X=Cl,Br,I)的DFT计算,研究了Mn掺杂钙钛矿敏化掺杂发光过程中,能量和电荷转移的争议问题。 作者定量地模拟了Mn掺杂钙钛矿在不同电荷和自旋状态下的电子结构,将Mn敏化作为钙钛矿组分的函数,对结构/机理进行了分析。该分析的结果,同时支持能量转移机制和电荷转移机制。后者可能更适合于Mn:CsPbCl3,因为它具有较小的能量势垒,并规避了自旋和轨道方面的限制。在电荷转移的情况下,决定掺杂发光量子产率的一个重要因素是中间氧化物种的能量,而带隙共振可以很好地解释能量转移。这两个方面由钙钛矿主体的带边能量控制,而这又可以被卤化物X所调制。 参考文献: Damiano Ricciarelli, Daniele Meggiolaro, Paola Belanzoni, Asma A. Alothman, Edoardo Mosconi*, and Filippo De Angelis*, Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites, ACS Energy Lett. 2021, 6, XXX, 1869–1878

ADF Highlight:仿生高容量吩嗪基阳极的水系有机氧化还原液流电池(Nature Energy, 2018)

Posted · Add Comment

文献资料: Aaron Hollas, Xiaoliang Wei, Vijayakumar Murugesan, Zimin Nie, Bin Li, David Reed, Jun Liu, Vincent Sprenkle & Wei Wang, A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries, Nature Energy, 3, 508–514 (2018) 水溶性有机(ASO)氧化还原活性材料,作为氧化还原液流电池(RFB)中传统过渡金属离子的替代品,近期备受关注。然而ASO可逆容量往往显著低于报道的理论最大值。本文中报道了一种吩嗪基ASO化合物,可逆容量超过其理论值的90%!通过修改吩嗪结构,使吩嗪的溶解度,相对原始吩嗪提高了1.8 M,氧化还原电位抬升超过400 mV。在接近饱和浓度下,RFB操作电压可达1.4 V,可逆阳极电解液容量为67 Ah L-1,500次循环中的每次循环的容量保持率为99.98%。   DFT计算细节:使用软件版本ADF2017,色散修正杂化泛函B3LYP-D3,AUG > ATZ2P基组(Frozen Core:none)。溶剂化方面:使用COSMO溶剂化模型,使用水作为溶剂计算溶剂化能。

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •