利用孔隙尺度结构研究宏观土壤特性:Simpleware基于图像的孔隙弹性结构建模

Posted · Add Comment

概述 重型机械造成的土壤压实会对土壤水力特性产生不利影响,并可能产生持续超过 15 年的影响。理解土壤力学性能的一个关键挑战是土壤本质上是多尺度的,其宏观孔隙弹性性能依赖于微观结构的精确细节。将这种微观尺度建模与宏观尺度联系起来是一个重要的挑战。 本项目采用均质化理论推导的由三个不同相组成的土壤孔隙弹性特性平均宏观模型,生成的方程通过一组在代表性几何上求解的单元问题进行参数化,可应用于大型结构变形的情况。同时还展示了如何利用结合 x 射线计算机断层扫描(X-CT)和基于图像建模的方法,比较不同初始条件下水分含量和压实对土壤宏观结构特性的影响。 亮点 推导由三个不同相组成的土壤孔隙弹性特性平均宏观模型在 Simpleware 软件中处理土壤图像并生成网格模型采用基于图像数据建模的方法研究不同初始条件下水分含量和压实对土壤宏观结构特性的影响为设计和优化土壤或其他多孔结构提供了新的见解 图像获取 土壤是在北威尔士某处地表收集的砂质饱和始成土,初筛至 5 mm 以下,在 23℃ 左右风干 2 天,然后再过筛至 0.6-1.18 mm。选取三种不同土壤条件的六个重复试样,共计 18 个样品。三种土壤分别是:高含水量的疏松土、高含水量的机械固结土和低含水量的机械固结土。采用瑞士同步辐射光源(SLS, Swiss Light Source)的 TOMCAT 光束线和 19 kV 单色光束条件对土壤进行扫描。 将扫描后的图像数据导入 Simpleware 软件,通过阈值工具分割出土壤中不同的相:固体矿物颗粒相、混合相(粘土颗粒和水)和充满空气的孔隙空间,应用分水岭算法分离粘连颗粒。 图1:不同土壤的原始CT图像和对应在Simpleware软件中的分割结果 平均模型 研究人员推导出土壤变形的平均孔隙弹性模型,可以从将 X-CT 获得的数据与土壤的宏观性质联系起来。步骤为:(1)对所涉及的相形成完整的微观描述;(2)推导没有明确考虑底层土壤几何形状每个细节的平均方程,参数通过具有代表性的土壤结构得出;(3)计算平均时考虑了微观和宏观尺度的压力和位移梯度。 图2:宏观尺度应变梯度引起的土体剪切变形示意图。箭头表示位移方向和相对大小,红色对应较大位移,蓝色对应较小位移。(a-c)为单个周期单元的位移;(d-f)四分之一结构的等效问题,即对称性降低;(a)和(d)是宏观位移;(b)和(e)是微观位移;(c)和(f)是总位移。 网格划分和模拟 在 Simpleware FE 模块直接对图像处理后的模型进行网格划分,采用的 FE-Free 算法可以最大限度地通过参数控制网格单元,同时最小化内存需求。为确保计算域包含足够大的体积代表土壤结构,考虑了一系列不同体积的网格。具体来说是边长为 100-400 的体素网格,对应为总边长为 0.16 mm 的最小网格和 0.64 mm […]