SCAN metaGGA 泛函简述

Posted · Add Comment

密度泛函理论的“天梯”

1964年,Hohenberg 和 Kohn用反证法告诉我们存在这样一个“天堂”,在那里有一个通用的电子密度泛函,能够在密度泛函理论(DFT)框架中给出任意体系的基态 【1】。这是一个美好的理想。Kohn 和 Sham 在随后给出了 Kohn-Sham 方程的同时,也开始了搭建通往“天堂”的“天梯”(Jacob’s Ladder)的第一步:局域密度近似(LDA)【2】。推广的梯度近似(GGA)尤其是 PBE 泛函【3】在固体计算领域取得的巨大成功似乎提示我们这是一条正确的途径。从那以后直到今天,研究者们一直在努力修建“天梯”。

密度泛函的一般表达式很容易写出:

只包含密度项为 LDA,包含密度梯度项为 GGA,包含动能项为 meta-GGA,这三类泛函均为半局域(semi-local)泛函,他们构成了“天梯”的前三级。半局域泛函的一个重要优势就是计算速度快,但由于各种半局域泛函往往只能满足部分的约束条件,因此往往只在某些体系里计算精度较好。将半局域泛函与非局域项组合构成杂化泛函(“天梯”第四级),虽然在多个方面的计算精度有很大改进,但是计算量却是百倍的增长。

SCAN Meta-GGA泛函

最新的 SCAN 泛函(Strongly Constrained and Appropriately Normed Semilocal Density Functional)【4】是 MetaGGA 泛函的一种,是基于约束构建非经验半局域泛函的一个重要成果,因为 SCAN 泛函是第一个满足全部已知的17个约束的半局域泛函。

对 SCAN 泛函的系统测试表明,此泛函在计算各种固体的各种性质(尤其是能量相关性质)中比 LDA 和 GGA 有很大的改进,几乎达到了杂化泛函的水平,但是比杂化泛函要大大节约时间,计算量保持在半局域泛函水平【5】【6】。

密度泛函理论天梯【7】。SCAN 泛函的出现将 metaGGA 泛函的精度提高到了杂化泛函的水平。

在 QuantumATK 中使用 SCAN 泛函

SCAN 泛函已经包含在 QuantumATK 的最新版本中,同时支持平面波基组计算引擎(DFT-PlaneWave)和原子轨道线性组合基组计算引擎(DFT-LCAO),可以用于块体材料的能量、结构优化、分子动力学、动力学矩阵、电声耦合、带电点缺陷分析、磁各向异性能量等各种计算。

DFT-PlaneWave 和 DFT-LCAO 计算引擎给出的结果一致:

提示:更多更新功能详见《QuantumATK P-2019.03新版发布》和 《QuantumATK功能列表》。

文献中对 SCAN 泛函的一些测试结果

SCAN 泛函在内聚能、形成能的计算中普遍优于其他的半局域泛函,例如在硅的间隙缺陷形成能计算中得到与实验一致的结果【5】。

SCAN 泛函在主族化合物结构稳定性预测中得到了近乎完美的结果,副族化合物结构稳定性预测也比 PBE 泛函要好【5】【8】。

SCAN 泛函还更好的体现了中程的范德华相互作用,在预测冰和水分子团结构【5】以及半导体材料【6】中得到很好的结果。

也有文章认为 SCAN 泛函在二维材料的结构和电子态研究中能得到更好的结果【9】。

参考文献

  1. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964).
  2. Kohn, W. & Sham, L. . Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
  3. Perdew, J., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
  4. Sun, J., Ruzsinszky, A. & Perdew, J. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett. 115, 1–6 (2015).
  5. Sun, J. et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 8, 831–836 (2016).
  6. Zhang, G.-X., Reilly, A. M., Tkatchenko, A. & Scheffler, M. Performance of various density-functional approximations for cohesive properties of 64 bulk solids. New J. Phys. 20, 063020 (2018).
  7. Car, R. Density functional theory: Fixing Jacob’s ladder. Nat. Chem. 8, 820–821 (2016).
  8. Zhang, Y. et al. Efficient first-principles prediction of solid stability: Towards chemical accuracy. npj Comput. Mater. 4, 9 (2018).
  9. Buda, I. G. et al. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional. Sci. Rep. 7, 44766 (2017).
  10. 更多更新功能详见《QuantumATK P-2019.03新版发布》和 《QuantumATK功能列表》。

立即试用 QuantumATK!


 

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •