采用患者三维打印模型进行血管内 Bentall 手术预演的概念验证(内附视频)

Posted · Add Comment

概述 胸腹主动脉瘤和累及主动脉弓的病变常规是进行血管内修复,但升主动脉的血管内治疗仍处于发展的早期阶段。Gaia(巴西圣保罗联邦大学)等人最近描述了首次通过血管内方法进行的人体 Bentall 手术。本项目与库克医疗合作设计带有冠状动脉分支的主动脉腔内移植物,用于修复具有传统开放手术修复禁忌症患者的复杂主动脉根部。计划通过植入定制的内移植物并结合经导管主动脉瓣置换术(TAVR)手术排除主动脉疾病。 在执行这一创新和个性化的手术之前,采用 Biomodex 公司基于患者计算机断层扫描(CT)重建的 3D 模型进行血管内 Bentall 修复术的特定预演,规划治疗累及主动脉根部的升主动脉瘤。通过使用体外 3D 模型模拟现实生活中的手术,提供针对特定患者新技术治疗策略的概念验证。 方法 患者特征 一名 69 岁的女性,升主动脉瘤增大并累及主动脉根部。病史包括 12 年前做过主动脉瓣修复术结合升主动脉包裹术,包裹已失败且向远端移动。由于该患者左心室功能受损、严重慢性阻塞性肺疾病以及与左侧偏瘫相关的活动能力差,因此被认为具有再次胸骨切开术的高风险。 3D 打印模型 将扫描获得的 CT 图像数据导入 Simpleware 软件进行分割,获得患者从股动脉到主动脉瓣生物瓣膜的三维重建解剖结构。3D 模型由 Biomodex 公司使用 INVIVOTECH 专有算法通过 Stratasys Polyjet 3D 打印机制成,该算法在微观层面结合柔性和刚性材料,为模型提供真实的生物力学行为。 图1:3D 打印模型 复合手术室 手术预演安排在 Marie Lannelongue 医院中采用最先进混合系统的专用临床前实验室,包含先进的成像应用:图像融合引导和锥形束 CT。 血流动力学特征 血液粘度为特有的 BloodSim 配方模拟,3D 模型连接离心泵(Medos Deltastream DP3 系统)提供顺向脉动流。 结果 图2:(A)上行分支内移植物(B)不同组件的最终配置(C)非对比增强锥形束 CT […]

通过添加线圈减缓在右侧放置植入式心律转复除颤器的发生器引发除颤阈值升高

Posted · Add Comment

概述 植入式心律转复除颤器(ICD)是治疗致命性心律失常最有效的方法,在激活的发生器(can)和右心室(RV)线圈间传递跨越心室心肌的强烈双相电击。通常会将发生器放置在患者左胸锁骨下,远端电极导线植入右心室(RV)腔内,一般是心尖位置。由于各种条件或与导线相关的并发症,这种配置并不总是可以实现,例如先前在左侧的装置感染可能需要重新在右胸植入。还可以选择将电击线圈放置在 RV 室间隔处,而不是像心脏再同步化治疗除颤器(CRT-D)设备那样放置在心尖。 本研究基于高分辨率的 CT 扫描图像数据创建整个躯干的计算模型队列,定量评估是否可以通过右心室(RV)电击线圈的交替定位或在上腔静脉(SVC)和冠状窦(CS)添加线圈减缓右侧发生器配置中除颤阈值(DFT)的潜在增加。 模型生成 躯干模型 获得 5 名接受经导管主动脉瓣置入术计划患者的整个躯干 CT 扫描(0.7 × 0.7 × 0.5 mm)以及额外更高分辨率对比心脏扫描(0.3 × 0.3 × 0.5 mm)的图像数据,在 Simpleware 软件中对主要器官、皮肤和骨骼进行分割。为右心室壁将血池膨胀至 3.5 mm,为左/右心房和主动脉将血池膨胀至 2 mm,并调整重叠区域。此外,还单独分割出肺静脉和 SVC 的血池和壁。 肥厚型和扩张型心肌病 根据测量尺寸初步评估五个心脏模型的病理结构差异,发现其中两个患有肥厚型心肌病(HCM)。为扩大模型队列,对心脏几何形状进行修改,为每个病例生成三个结构不同的心脏,即健康、HCM 和扩张型心肌病(DCM)的心脏。 表1:健康、DCM 和 HCM 心脏的左心室舒张末期直径与心室壁厚度 缺血性心肌病 为重现缺血性心肌病(ICM),随机选择根据梗死的猪心脏晚期钆增强 MRI 重建五种不同的梗死疤痕并映射到五颗健康心脏。选择疤痕位置代表各种典型的灌注区域:左前降支(LAD)、左回旋支(LCA)、右冠状动脉(RCA)。 图1:(A)五个健康心脏中在 RCA、LCA、LAD 灌注区的梗死疤痕(B-F)ICD配置的 RCA、LCA、LAD 疤痕模式下 DFT 能量的比较 ICD 的电极放置 按照设计的每个 ICD 配置将虚拟线圈/发生器植入躯干模型中。对标准经静脉 ICD 配置进行建模,将 RV 电击线圈(直径 2 mm,长 […]

经导管主动脉瓣植入术中支架放置和旋转方向对假体小叶内应力的影响

Posted · Add Comment

概述 主动脉瓣狭窄(AS)是一种瓣膜小叶钙化和结构扭曲逐渐抑制正常功能的疾病。AS 的常规治疗是外科瓣膜置换术(SVR),但因其极具侵入性,大约 31.8% 的患者被认为不适合该手术。因此,开发出一种替代的微创治疗方案即经导管主动脉瓣植入术(TAVI)。 TAVI 装置是个圆柱形支架,但在植入后会由于原生阀瓣上的钙化材料对支架施加不规则力引起局部膨胀。因此,变形TAVI装置内的小叶可能会承受增大的应力,导致装置过早失效。本项目通过计算分析,模拟一个完整的 TAVI 装置模型,并将其与由 CT 数据获得的主动脉根模型整合,随后进行压力模拟的心动周期。 亮点 在 Simpleware 软件中处理患者 CT 扫描数据,分割主动脉根部并与 TAVI 装置整合;在 ABAQUS 中模拟该装置的心动周期;通过将假体放置在不同角度方向的模拟评估对小叶应力的影响。 方法 获取 83 岁患者心脏舒张期的 CT 扫描数据,导入 Simpleware 软件进行图像处理,分割出主动脉根部、与退行性主动脉狭窄相关的小叶和 8 个钙化肿块。将基于 SAPIEN XT 的 TAVI 装置与主动脉根部整合,并生成高质量的网格模型。 图1:钙化肿块、主动脉根壁和主动脉小叶 然后在 ABAQUS 中模拟该装置的心动周期,重复 8 次,每次装置都相对原生瓣膜处于不同的旋转方向。装置的方向由原生小叶与假体小叶间的夹角定义,模拟的角度 θ 分别为0°、15°、30°、45°、60°、75°、90°和105°。 图2:TAVI 装置小叶(蓝色)相对于原生小叶(黑色)的旋转角度(绿色) 图3:完整 SAPIEN XT 和 NovaFlexþ 输送装置的计算模型 主动脉根部、主动脉、左心室流出道(LVOT)和原生小叶的密度为 1.1 g/cm3,瑞利阻尼系数为 α=800(β=0)。假设钙化肿块的密度为 2g […]

心室心肌的高保真三维微观力学模型

Posted · Add Comment

概述 肺动脉高压(PAH)等心脏疾病会造成心脏组织结构和力学行为发生实质性改变。PAH 使心脏右心室(RV)长期压力超负荷,右心室最初通过肌纤维肥大增厚以减轻壁应力的增加,但随后扩张并失去收缩功能,导致右心室衰竭。有研究表明,压力超负荷导致的右心室重构是右心室功能不良预后的主要预测因素之一。因此,量化右心室的力学状态,通过开发计算模型更好地了解 PAH 引起重塑的发生、发展和潜在可逆性的影响因素十分必要。 通过心脏的多尺度计算建模,将细胞尺度与组织尺度行为联系起来,可以提高对心脏重塑的理解,并更好地确定治疗靶点。本研究结合共聚焦显微镜技术、软组织力学和有限元建模,开发了一种高保真的心室心肌微观解剖学仿真模型。 亮点 基于兔心肌的高分辨率 3D 成像数据创建三维模型在Simpleware FE 中生成高质量的网格模型在 FEniCS 软件中进行有限元分析 图像处理 取直径为 5mm 的新西兰大白兔左心室心肌样本,冷冻 100 μm 厚的切片,标记切片并在 Fluoromount-G 内密封使其不受压。通过激光扫描共聚焦显微镜获得三维图像堆栈,成像组织体积为 204 × 204 × 60 μm。 采用分水岭算法和基于直方图的阈值分割半自动方法对三维组织结构进行分割和重建。为简化初始有限元模型的开发,将肌细胞连接并组合成“肌纤维”相,而不是单个肌细胞。冠状血管、成纤维细胞和细胞外空间被合并成“细胞外基质(ECM)”或“胶原”相,消除模型域中的空洞。在 Simpleware ScanIP 中利用 Island removal 去除孤岛,使用 Recursive Gaussian 滤波器平滑。在 Simpleware FE 模块中生成由约 110 万个线性四面体单元组成的体积网格。经过图像处理后,肌细胞的方向与 e1 轴对齐,交叉纤维方向与 e2 轴对齐。 图1:左图依次为心肌细胞、冠状动脉血管、成纤维细胞、细胞外空间。中图:肌细胞组成肌纤维相(红色),放大突出显示的为代表性肌细胞;冠状动脉血管、成纤维细胞和细胞外空间合并为细胞外基质相(灰色)。右图:FE 模型横截面展示肌纤维单元嵌入在 ECM单元中。 模拟 单层仿真 基于结构的模型最初是为了具有更分散纤维分布的组织尺度肌纤维/胶原蛋白/相互作用应力而开发。因此,作为微观解剖模型的拟合目标,使用微观解剖有限元几何高度对齐的结构和基于结构的模型模拟应力应变响应。在开源软件 FEniCS 中不同双轴应变配置 E11:E22 = 0.30:0.30、0.30:0.15 和 0.15:0.30 下,对模型的边界表面施加变形。 […]

利用自由式三维超声无创监测动静脉瘘

Posted · Add Comment

概述 终末期肾病(ESRD)患者需要通过动静脉瘘(AVF)接受血液透析,血液透析患者的发病率和死亡率都很高,30% 的患者在第一年内要手术干预 AVF。功能良好的 AVF 始终要具有适合透析的高血流量,新内膜增生引起通路狭窄可能会导致血管通路(VA)失功。磁共振血管造影(MRA)、计算机断层扫描血管造影(CTA)和血管造影最常用于血管网络的 3D 成像,但依赖于熟练的操作员、昂贵的设备和静脉造影剂的使用,造影剂也可能会给 ESRD 患者带来副作用。 因此超声成为一个可行的选项,通过获取 B 模式切片并为它们分配全局位置和方向,空间对齐即可创建三维体积模型。这种 3D 自由式超声已应用于神经导航、乳腺癌放疗计划、脊柱成像及前列腺活检等。本项目开发了一种便携式 3D 自由式超声系统,可在临床环境中扫描患者的 AVF,重建和分析同一患者不同时间的脉管系统。本方法适用于需要在医院进行多次透析治疗的 ESRD 患者,监测高风险的血管通路失功。 亮点 使用自由式超声对动静脉瘘进行无创3D成像在 Simpleware 软件中重建和分析三维模型为 ESRD 患者提供监测血管通路失功的有效方法 图像获取 自由式 3D 超声系统由超声仪和线性超声波换能器(Mindray, L14-6NS, 14MHz, 38mm FOV)组成,换能器通过红外 3D 摄像机跟踪。在工作站笔记本电脑上运行 MATLAB 中的自编软件,启用图像用户界面实现扫描的可视化和质量反馈。为了进行必要的 3D 转换,需要校准确定追踪标记点到超声帧的空间和角度偏移,这些值的初始测量通过每个平面旋转运动的误差最小化得到了改善。大多数 AVF 患者每周至少要去医院进行 3 次透析治疗,本项目设计的扫描过程仅需要患者 5-10 分钟的时间,非超声医师也能够操作。 图1:自由式三维超声系统 图像处理 将处理后的切片图像堆栈导入 Simpleware ScanIP 软件,使用中值滤波去除噪声,通过基于像素强度的阈值分割技术获得脉管系统。在高密度的堆栈中,可以采用间隔地涂画切片并利用插值重建或者重采样的方法缩短分割时间。应用 Recursive Gaussian 平滑后,以 […]

美敦力:利用数字孪生研究房室传导阻滞

Posted · Add Comment

数字孪生作为再现复杂解剖结构和模拟研究身体与医疗器械之间关系的技术资源,其重要性与日俱增。在医疗行业应用的关键优势之一是能够通过虚拟测试收集数据以补充临床试验,并为制造商增加监管证据。美敦力公司在这方面已经取得一些进展,近期Kevin Sack博士发表的工作成果中使用Simpleware软件创建了一个数字孪生,由经验证的机电全心脏模型研究房室(AV)传导阻滞。 图:示意图展示了机电四腔心脏与由顺应性和阻力项组成集总循环系统之间的连接 创建数字孪生 美敦力构建并验证了一个针对特定受试者的四腔猪心脏模型,从体内数据中研究机电耦合现象。完整工作流程的简要总结为: 对已消融房室结和安装有Micra AV™ 起搏器的家养猪进行CT扫描,将图像数据导入Simpleware中做分割处理,识别出心房并在舒张末期创建心室,然后生成用于仿真的网格。该网格模型的构建是为了研究机电耦合性能,包括用实验记录的LV压力-容积环进行机械校准,通过比较从体内CT扫描创建电子模型的左、右心室表面进行验证。将验证的模型函数与同一受试者的房室传导阻滞仿真进行对比。 从这项研究中,美敦力能够证明除了传导中断,房室传导阻滞还会引起心搏脱漏后舒张期整个心脏应力和应变的增大。更普遍地说,该项目验证了四腔跳动心脏模型的机电功能,用以研究病理功能障碍,并收获了关于心脏的宝贵知识。 深远影响 随着数字孪生成为医疗器械制造商和临床专业人员更加倾向使用的研究工具,美敦力这项研究取得的成果展示出数字孪生在加速新疗法和理解性能方面的巨大潜力。此外,计算模型提供的灵活性意味着可以获得有用的数据,这些数据可能从患者那里收集会非常困难或有风险。 我们也很期待把数字孪生作为计算工作流程的一部分之后还将如何发展。Simpleware软件非常适合为这些应用提供快速准确的图像数据分割服务,尤其是最近推出的人工智能工具可以极大加速处理扫描数据时的常见工作流程。 图:一个完整周期内正常(中图)和房室传导阻滞(上图)机电耦合全心脏模型中的触发激活。左心室压力值对应不同时间(a-f)的标记位置(下图)。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/news-and-events/digital-twins-medtronic.htmlSack K L, Blauer J J, Campbell M P, et al. Creating a Digital Twin to Investigate AV Block: In-sights From a Validated Electromechanical Full-Heart Model[C]//2020 Computing in Cardiology. IEEE, 2020: 1-4.

分析冠状动脉支架血栓形成【Simpleware应用】

Posted · Add Comment

概述 支架内血栓是冠状动脉支架及支架介入治疗的主要并发症,虽然发病率较低,但往往是不可预料和致命性的,仅通过临床研究难以探索其机理。因此,在这些设备的技术进步过程中,实验模型对于进一步了解设备的安全性和有效性是不可或缺的。除模型外,我们还需要结合先进成像处理技术的新颖分析方法。创建冠状动脉支架性能的流动循环模型并应用数字信号处理技术,研究因支架几何特征产生的局部流动效应,以及最终与血栓形成的关系。 亮点 利用 MicroCT 图像数据研究支架几何特征及其与血栓形成的关系使用 Simpleware 软件重建支架支柱,将定量数据发送到MATLAB进行分析实验数据和先进图像处理的结合为支架设计和血栓形成提供了深入的理解 收集实验数据 通过体外流动循环装置模拟与人类冠状动脉相似的血液流动状态。将支架放置在各种膨胀条件下的流动循环中。流动循环运行完成后,将试样经过 Micro CT 扫描获得的 DICOM 文件导入 Simpleware ScanIP 中处理。 Simpleware 中的图像处理 Micro CT 数据导入 Simpleware ScanIP 后,使用之前实验测试中预先计算的阈值水平从血块形成和循环液中分割出支架支柱。作为三维可视化工作流程的一部分,采用平滑滤波器创建连续的结构。随后利用Simpleware ScanIP API 接口为每张 Micro CT 切片中每个掩膜提取像素值,绘制血栓形成的示意图。并使用定制的 MATLAB 程序提取支柱的位置信息,并由每个切片上的掩膜像素值计算壁面距离。 图:用Simpleware ScanIP软件重建其中一个支架支柱 结果和未来展望 结果表明,支架几何特征在凝血模式中发挥着重要的作用,特别是在频率 0.6225 Hz 时对应的几何距离为1.606 mm。在所有试样中,几何特征和血块分布之间的相关性平方数大于 0.4。 图:最上面的三个图显示了每个试样的壁面距离与沿血管长度的关系,红点是每个Micro CT切片的中值,绿点是平均值。灰色阴影区域表示沿血管长度上每个切片的25 % -75 %四分位范围。最下面的图展示了血块形成和沿血管长度的关系,计算定义为血块的像素数与每个血管内腔定义的像素总数。 在贴壁不良的支架中,最大错位(真实的异质性模型)范围从 0.27 mm 到 0.64 mm,发现血栓形成在支架支柱之间,而不是直接地贴近支柱。 图:相位滞后表明支柱上没有血块,而是分散在支柱之间 这项早期工作展示了如何使用实验方法和先进的图像分析更深入地了解出现的血块形成数量以及空间位置。这种方法可以更详细地研究在实验设置的血块形成中支架设计和部署的相互作用。 参考 致谢和更多信息请参考英文原文:https://www.synopsys.com/simpleware/resources/case-studies/thrombosis-formation.htmlBrown, J, […]

人工智能技术加速3D打印心脏模型【Simpleware应用】

Posted · Add Comment

概述 Nicklaus儿童医院心血管外科高级项目实验室(APL)需要为一名青少年患者制定一项复杂的手术规划,该患者左冠状动脉异常起源于右主动脉窦,伴壁内、动脉间行程。 病理的复杂性决定了对患者心脏进行3D CT扫描(DICOM格式)十分必要,而3D打印模型将有助于医生团队为手术规划展示心脏通路。因此,他们利用Simpleware软件对DICOM图像数据进行自动化分割,在短短15分钟内就成功创建出能够直接用于3D打印的模型。本案例中打印模型所用设备为Stratasys J750 Digital Anatomy打印机。 亮点 Nicklaus儿童医院心血管外科APL团队在他们的常规工作流程中使用Synopsys公司的Simpleware软件进行3D解剖模型打印;Simpleware的AI工具有助于快速创建出超高精度模型;打印出高质量3D解剖模型的设备为Stratasys J750 Digital Anatomy打印机。 介绍 3D解剖打印可以为临床医生带来众多益处,包括增强病理的可视化和测量以支持标准手术与复杂手术的规划,同时也能够整合医疗器械(如有适用)。Nicklaus儿童医院心血管外科高级项目实验室(APL)正在利用包含全息医学3D可视化和3D打印在内的各种先进技术促进加强手术规划、改善患者体验。作为美国最早应用3D打印技术进行手术规划和教育的机构之一,Nicklaus儿童心血管外科APL已经打印超过500例心、脑、脊柱、四肢等器官的模型。 Nicklaus儿童医院的Robert Hannan、MD、Thomas Haglund和Muhanad Shraiteh与Synopsys的Simpleware产品团队通力合作,开发出将患者影像数据转换为Stratasys 3D打印机适用模型的解决方案。打印得到的3D解剖模型有助于临床医生规划儿童心脏手术。在本案例研究展示的示例中,心血管外科APL团队使用Simpleware软件强大的人工智能(AI)工具加快为青少年患者创建心脏模型的工作流程。 Simpleware 软件中的自动化分割和打印准备 将患者的心脏CT扫描数据导入Simpleware ScanIP Medical和自动分割模块Simpleware AS Cardio,一键点击即可完成分割和标记。此过程显著改善了准备3D图像数据最常见的瓶颈之一。(视频:使用Simpleware AS Cardio进行心脏的自动分割:展示了典型现有分割工具与Simpleware AI产品之间的耗时差异。)

分析增材制造冠状动脉支架【Simpleware应用】

Posted · Add Comment

概述 激光粉末床熔合技术(L-PBF)在金属增材制造(AM)方面的发展能够实现在微米范围内制造出高度多孔的细胞结构,因此理论上可以用于制造冠状动脉支架。 然而,工艺产生的不平整带来了特别的挑战,导致实际的 L-PBF 支架与预期支架(CAD 模型)在形态和力学性能上都存在偏差。本次分析着重关注 L-PBF 支架的膨胀行为。为进一步研究这些不平整造成的影响,基于真实和计算机重建L-PBF 支架建立实验和计算的联合框架。 亮点 使用Simpleware ScanIP 基于 µCT 数据重建 L-PBF 支架模型使用 Simpleware FE 生成稳健高效的支架网格模型,使用 Abaqus FEA 软件进行后续的结构分析基于重构的支架模型,采用实验测试和数值分析相结合的方法反演确定 L-PBF 支架的力学性能分析工艺产生的不平整对力学行为的影响,特别是 L-PBF 支架的膨胀行为。 实验数据 由 FIT Production GmbH 公司制造的激光粉末床融合(L-PBF)支架,考虑了两种分析 L-PBF 支架的后处理状态:1)热处理;2)电抛光和热处理。在支架被放置在两块板之间压缩以确定它们的径向强度之前,首先获取支架结构的 µCT 图像。在原始的实验中还对制造的支架做了进一步研究(详见参考信息)。 支架模型重建及FEA 将 µCT 数据导入 Simpleware ScanIP,使用 Flood Fill 工具进行分割,计算内部孔隙率。使用形态滤波器(erode、dilate、open和close)和 Boolean 布尔运算,生成内部空隙的三维模型。在 Simpleware FE 模块中对支架模型进行网格划分,由稳健的算法生成高质量的 FE 网格。然后将支架模型直接导入 SIMULIA Abaqus FEA 软件进行结构力学分析,重点研究支架在两个平板间的压缩和支架—球囊的扩张。 图:三个模型离散化图示。从左至右分别为:重建经热处理支架模型、重建经热处理和电抛光支架模型、以CAD模型为参考支架模型。 图:三个模型在压缩 0.8 mm 时外表面 […]

 
  • 标签

  • 关于费米科技

    费米科技以促进工业级模拟与仿真的应用为宗旨,致力于推广基于原子级别模拟技术和基于图像模型的仿真技术,为学术和工业研究机构提供研发咨询、软件部署、技术攻关等全方位的服务。费米科技提供的模拟方案具有面向应用、模型新颖、功能丰富、计算高效、简单易用的特点,已经服务于众多的学术和工业用户。

    欢迎加入我们!(点击链接)

  • 最近更新

  • 联系方式

    • 留言板点击留言
    • 邮箱:sales_at_fermitech.com.cn
    • 电话:010-80393990
    • QQ: 1732167264
  • 订阅费米科技新闻

    • 邮件订阅:
      您可以使用常用的邮件地址接收费米科技定期发送的产品更新和新闻。
      点击这里马上订阅
    • 微信订阅:
      微信扫描右侧二维码。
  •