用户工具

站点工具


atk:模拟气相沉积薄膜生长过程

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
atk:模拟气相沉积薄膜生长过程 [2016/09/19 18:06] – [概要] nie.hanatk:模拟气相沉积薄膜生长过程 [2018/03/20 22:15] (当前版本) liu.jun
行 8: 行 8:
 在本实例中你将模拟在晶体碳化硅(SiC)基底上生长SiC,与文献[1]中的研究类似。你将使用半经验势,相比从头算方法(譬如DFT方法),它能进行更大系统和更大时间规模的模拟。本例中的模拟主要是物理气相沉积(PVD)方法。当然,如果包含了描述化学反应的合适的力场,或者有充足的计算资源来使用从头算方法,化学气相沉积(CVD)过程原则上也是可以进行模拟的。 在本实例中你将模拟在晶体碳化硅(SiC)基底上生长SiC,与文献[1]中的研究类似。你将使用半经验势,相比从头算方法(譬如DFT方法),它能进行更大系统和更大时间规模的模拟。本例中的模拟主要是物理气相沉积(PVD)方法。当然,如果包含了描述化学反应的合适的力场,或者有充足的计算资源来使用从头算方法,化学气相沉积(CVD)过程原则上也是可以进行模拟的。
  
-对于本实例来说,你需要熟悉在[[atk:分子动力学基础|分子动力学基础]]中描述的分子动力学基本功能。你将学到如何使用Python脚本语言和ATK分子动力学常规中的挂钩功能(hook functionality)来运行高级的模拟。+对于本实例来说,你需要熟悉在[[atk:分子动力学基础|分子动力学基础]]中描述的分子动力学基本功能。你将学到如何使用Python脚本语言和QuantumATK分子动力学常规中的挂钩功能(hook functionality)来运行高级的模拟。
  
 <WRAP center round info 100%> <WRAP center round info 100%>
 **小提示 !** **小提示 !**
-在文献[1]中使用的修正嵌入原子模型(MEAM)目前在VNL-ATK中不可用。你将使用Tersoff势来代替,它并不会产生如参考文献中那样的层状晶体。模拟技术显然独立于势能的选取,因此对各种材料都适用。+在文献[1]中使用的修正嵌入原子模型(MEAM)目前在QuantumATK中不可用。你将使用Tersoff势来代替,它并不会产生如参考文献中那样的层状晶体。模拟技术显然独立于势能的选取,因此对各种材料都适用。
 </WRAP> </WRAP>
  
行 21: 行 21:
 ===== 模拟策略 ===== ===== 模拟策略 =====
  
-运行一个沉积模拟需要一些不同的技术。与通常的平衡态分子动力学模拟最主要的不同是,随着蒸汽原子或分子的引入,整个系统的粒子数随之增加。在VNL-ATK中有两种策略来实现:+运行一个沉积模拟需要一些不同的技术。与通常的平衡态分子动力学模拟最主要的不同是,随着蒸汽原子或分子的引入,整个系统的粒子数随之增加。在QuantumATK中有两种策略来实现:
  
 1.为每个新引进的原子或者分子运行一次新的模拟。通过在已沉积原子/分子上连续添加新的原子/分子可以实现整个沉积的模拟。 1.为每个新引进的原子或者分子运行一次新的模拟。通过在已沉积原子/分子上连续添加新的原子/分子可以实现整个沉积的模拟。
行 27: 行 27:
 2.将所有需要沉积的原子或分子放在模拟晶胞的库(reservoir)中。对于每个新的沉积过程,从库中取出一个原子把它放在基底上方。 2.将所有需要沉积的原子或分子放在模拟晶胞的库(reservoir)中。对于每个新的沉积过程,从库中取出一个原子把它放在基底上方。
  
-第一个方法的好处是只有真正需要的原子才出现在模拟晶胞中,这提高了模拟效率。然而,由于原子数在变化,在VNL-ATK中不可能将整个模拟保存在一个[[http://www.quantumwise.com/documents/manuals/latest/ReferenceManual/index.html/ref.mdtrajectory.html|MD Trajectory]]中用以后续的可视化和分析。所以,本实例选取了第二种方法。当准备模拟时,我们必须注意在库中的原子不会与系统活跃部分有显著的相互作用,尤其是吸附发生的表面。在本实例中,库将会呈现为放在紧挨着基底底部的晶体。+第一个方法的好处是只有真正需要的原子才出现在模拟晶胞中,这提高了模拟效率。然而,由于原子数在变化,在QuantumATK中不可能将整个模拟保存在一个[[http://www.quantumwise.com/documents/manuals/latest/ReferenceManual/index.html/ref.mdtrajectory.html|MD Trajectory]]中用以后续的可视化和分析。所以,本实例选取了第二种方法。当准备模拟时,我们必须注意在库中的原子不会与系统活跃部分有显著的相互作用,尤其是吸附发生的表面。在本实例中,库将会呈现为放在紧挨着基底底部的晶体。
 {{ :atk:reservoir_schematic.png?400 |}} {{ :atk:reservoir_schematic.png?400 |}}
  
行 260: 行 260:
 <WRAP center round info 100%> <WRAP center round info 100%>
 **注意** **注意**
- +在2016版ATK中,NVT Nose–Hoover方法是通过NVTNoseHoover级来实现,所需脚本如上面下载提供。但是在2015版的ATK或者更早的版本,这级命名为NVTNoseHooverChain。所需脚本请在{{ :atk:script_deposit_sic_atk2015.rar |Script_deposit_SiC_atk2015.py}}下载。
-In ATK version 2016, the NVT Nose–Hoover method is implemented in the NVTNoseHoover class, which is the one used in the script provided above. However, in ATK version 2015 and earlier, that class is named NVTNoseHooverChain. The script provided above will therefore not work with ATK 2015 and earlier. Use instead this script: Script_deposit_SiC_atk2015.py.+
 </WRAP> </WRAP>
 +
  
  
atk/模拟气相沉积薄膜生长过程.1474279583.txt.gz · 最后更改: 2016/09/19 18:06 (外部编辑)

© 2014-2022 费米科技(京ICP备14023855号